Ch 16 Acid-Base Equilibria (OpenStax Sections 14.3, 14.4, 14.5, 14.6, and 14.7)
Finding $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$ or $\left[\mathrm{OH}^{-1}\right]$ for weak acids and bases involves equilibrium constants.
This is because they do not dissociate fully and they have a reversible hydrolysis reaction.

- Acid Ionization Constant $\mathbf{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{A}^{-1}\right]}{[\mathrm{HA}]}$ is the expression for $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{A}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$
- For acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-1}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.7 \times 10^{-5}$
- Correspondingly
- For acetic acid
- This is similar to

$$
\mathbf{p K} \mathbf{K}_{\mathrm{a}}=-\log _{10}\left(\mathbf{K}_{\mathrm{a}}\right) \text { and } \mathbf{K}_{\mathrm{a}}=\mathbf{1 0}^{-\mathbf{p K a}}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \left(1.7 \times 10^{-5}\right)=4.75 \text { and } \mathrm{K}_{\mathrm{a}}=10^{-(4.75)}=1.7 \times 10^{-5}
$$

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right] \text { and }\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=10^{-\mathrm{pH}}
$$

K_{a} must be determined experimentally (two general methods)

- Degree of ionization (or \% ionization) is determined by measuring electrical conductivity or another colligative property (that depends only on total moles of all solutes).
- Measure pH or $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$ directly. Then, calculate all other concentrations with an eqm table.

Ex $16.010 .100 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ (benzoic acid) has $\mathrm{pH}=2.602$. Find K_{a} and degree of ionization.
$-\mathrm{HBnz}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Bnz}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1} \quad \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=10^{-\mathrm{pH}}=10^{-2.602}=2.50 \times 10^{-3} \mathrm{M}$

$$
\begin{array}{lrr}
0.100 & 0 & 0 \\
-\mathrm{x} & +\mathrm{x} & +\mathrm{x}
\end{array} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{Bnz}^{-1}\right]}{[\mathrm{HBnz}]}=\frac{\mathrm{x}^{2}}{(0.100-\mathrm{x})}
$$

$$
0.100-x \quad x \quad x
$$

- Generally, variable in denominator $(-x)$ can be neglected for weak acid/base if $\frac{[H A]_{\mathbf{0}}}{\mathbf{K}_{\mathbf{a}}}>\mathbf{1 0 0}$.

$$
x \ll 0.100 \text { So, } 0.100-x \approx 0.100 \quad K_{a}=\frac{\left(2.50 \times 10^{-3}\right)^{2}}{0.100}=6.25 \times 10^{-5}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left(2.50 \times 10^{-3}\right)^{2}}{0.100}=6.25 \times 10^{-5} \\
& \frac{[\mathrm{HA}]_{0}}{\mathrm{~K}_{\mathrm{a}}}=\frac{\left(1.00 \times 10^{-1}\right)}{\left(6.25 \times 10^{-5}\right)}=1600(>100)
\end{aligned}
$$

- Degree of Ionization $=\frac{\left[\mathrm{A}^{-1}\right]_{\text {eqm }}}{[\mathrm{HA}]_{0}}$
$\left[\mathrm{Bnz}^{-1}\right]_{\mathrm{eqm}} \div[\mathrm{HBnz}]_{0}=\mathrm{x} \div 0.100=\left(2.50 \times 10^{-3}\right) \div(0.100)=0.0250$ (equivalent to $\left.2.50 \%\right)$
Ex 16.02 For 0.0153 M HBnz, determine pH and degree of ionization using $\mathrm{K}_{\mathrm{a}}=6.25 \times 10^{-5}$.
$-\mathrm{HBnz}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Bnz}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1} \quad \frac{[\mathrm{HA}]_{0}}{\mathrm{~K}_{\mathrm{a}}}=\frac{(0.0153)}{\left(6.25 \times 10^{-5}\right)}=240(>100)$

0.0153	0	0	So, we can neglect x in the denominator.
-x	+x	+x	It will cause some error in x , but it will be $<10 \%$.

$-\mathrm{Ka}=6.25 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{Bnz}^{-1}\right]}{[\mathrm{HBnz}]}=\frac{\mathrm{x}^{2}}{(0.0153-\mathrm{x})}=\frac{\mathrm{x}^{2}}{0.0153}=\frac{\mathrm{x}^{2}}{1.53 \times 10^{-2}}$

- $\mathrm{x}^{2}=9.56 \times 10^{-7} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\mathrm{x}=9.77 \times 10^{-4} \mathrm{M} \quad \mathrm{pH}=-\log \left(9.77 \times 10^{-4}\right)=3.01$
- Degree of Ionization $=\left[\mathrm{Bnz}^{-1}\right]_{\text {eqm }} \div[\mathrm{HBnz}]_{0}=\mathrm{x} \div 0.0153=0.0639$ (or 6.39%)

Note that Degree of Ionization depends on both K_{a} and [HA].

Ex 16.03 Determine pH of 2.05 g Salicylic Acid (HSal) in 0.500 L solution if $\mathrm{K}_{\mathrm{a}}=1.05 \times 10^{-3}$.

- Moles $\mathrm{HSal}=\frac{2.05 \mathrm{~g}}{138.12 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.0148 \mathrm{~mol} \quad[\mathrm{HSal}]_{0}=\frac{0.0148 \mathrm{~mol}}{0.500 \mathrm{~L}}=0.0296 \mathrm{M}$
$-\quad \mathrm{HSal}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Sal}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$

0.0296	0	0
-x	+x	+x
$0.0296-\mathrm{x}$	x	x

$-\quad \mathrm{K}_{\mathrm{a}}=1.05 \times 10^{-3}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{Sal}^{-1}\right]}{[\mathrm{HSal}]}=\frac{\mathrm{x}^{2}}{(0.0296-\mathrm{x})}$

- We cannot neglect x in this problem because $[\mathrm{HSal}]_{0} / \mathrm{K}_{\mathrm{a}}=28.2$, which is less than 100 .
- First, rearrange the equation to a single line: $\quad x^{2}=\left(1.05 \times 10^{-3}\right)(0.0296-x)$
- Then, rearrange to set equation equal to zero: $\quad x^{2}+\left(1.05 \times 10^{-3}\right)(x)-\left(3.11 \times 10^{-5}\right)=0$
- The solution to this quadratic equation is: $\quad x=(1 / 2) \times\left[-\mathrm{Ka}+\sqrt{\mathrm{Ka}^{2}+4[\mathrm{HSal}]_{0} \mathrm{Ka}}\right]$
- Substituting with the values above, we get: $\quad \mathrm{x}=(1 / 2) \times\left[-\left(1.05 \times 10^{-3}\right)+\left(1.12 \times 10^{-2}\right)\right]$
- The final result is:

$$
\mathrm{x}=5.08 \times 10^{-3} \mathrm{M}=\left[\mathrm{Sal}^{-1}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]
$$

- Ionization $=\frac{\mathrm{x}}{[\mathrm{HSal}]_{0}}=\frac{5.08 \times 10^{-3}}{0.0296}=0.172$

$$
\mathrm{pH}=-\log \left(5.08 \times 10^{-3}\right)=2.29
$$

Polyprotic Acids (Formula has more than one H^{+1})

- $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HSO}_{4}{ }^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$
$\mathrm{K}_{\mathrm{a} 1}>10^{+6}$ (strong acid)
$\mathrm{HSO}_{4}^{-1}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{-2}+\mathrm{H}_{3} \mathrm{O}^{+1}$
$\mathrm{K}_{\mathrm{a} 2}=1.1 \times 10^{-2}$ (weak acid)
- $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$
$\mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}$
$\mathrm{HCO}_{3}^{-1}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+1}$
$\mathrm{K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$
- $\mathbf{K}_{\mathbf{a} 1}>\mathbf{K}_{\mathbf{a} 2}>\mathbf{K}_{\mathbf{a} 3}$ (for example $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}>\mathrm{HPO}_{4}{ }^{-2}$)

The increasing negative charges on the subsequent acids decrease the acidity.

Ex 16.04 Determine pH and Ion Concentrations for a 0.100 M Adipic Acid $\left(\mathrm{H}_{2} \mathrm{Adi}\right)$ solution.

- Adipic acid is diprotic with $\mathrm{K}_{\mathrm{a} 1}=3.82 \times 10^{-5}$ and $\mathrm{K}_{\mathrm{a} 2}=3.87 \times 10^{-6}$.
- $\mathrm{H}_{2} \mathrm{Adi}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HAdi}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$

0.100	0	0
-x	+x	+x
$0.100-\mathrm{x}$	x	x

$-\quad \mathrm{K}_{\mathrm{a} 1}=3.82 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{HAdi}^{-1}\right]}{\left[\mathrm{H}_{2} \text { Adi] }\right.}=\frac{\mathrm{x}^{2}}{(0.100-\mathrm{x})}=\frac{\mathrm{x}^{2}}{0.100}$

- $x^{2}=K_{a 1}\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}=3.82 \times 10^{-6}$ and $\mathrm{x}=\sqrt{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}}=1.95 \times 10^{-3} \mathrm{M}$
- Ignore the change in $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$ due to the second reaction.

The second acid $\left(\mathrm{HAdi}^{-1}\right)$ is much weaker than first acid $\left(\mathrm{H}_{2}\right.$ Adi).

- So: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\left[\right.$ HAdi $\left.^{-1}\right]=\mathrm{x}=1.95 \times 10^{-3} \mathrm{M}$
- And: $\quad \mathrm{pH}=-\log \left(1.95 \times 10^{-3}\right)=2.71$
- Use x for the starting concentrations of both $\mathrm{H}_{3} \mathrm{O}^{+1}$ and HAdi^{-1} in the $2^{\text {nd }}$ table (next page).
$-\mathrm{HAdi}^{-1}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Adi}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+1}$
$1.95 \times 10^{-3} \quad 0 \quad 1.95 \times 10^{-3}$

-y	+y	+y
$\left(1.95 \times 10^{-3}\right)-\mathrm{y}$	y	$\left(1.95 \times 10^{-3}\right)+\mathrm{y}$

- $\quad \mathrm{K}_{\mathrm{a} 2}=3.87 \times 10^{-6}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]\left[\mathrm{Adi}^{-2}\right]}{\left[\mathrm{HAdi}^{-1}\right]}=\frac{\left[\left(1.95 \times 10^{-3}\right)+\mathrm{y}\right][\mathrm{y}]}{\left[\left(1.95 \times 10^{-3}\right)-\mathrm{y}\right]}=\frac{\left[1.95 \times 10^{-3}\right][\mathrm{y}]}{\left[1.95 \times 10^{-3}\right]}=\mathrm{y}$
- $y \ll 1.95 \times 10^{-3}$ so $\left[\left(1.95 \times 10^{-3}\right)+y\right]=\left[\left(1.95 \times 10^{-3}\right)-y\right]=1.95 \times 10^{-3} \mathrm{M}$
- This makes both of those terms cancel and $\mathrm{K}_{\mathrm{A} 2}=3.87 \times 10^{-6} \mathrm{M}=\mathrm{y}=\left[\mathrm{Adi}^{-2}\right]$
- In general $\left[\mathbf{A}^{-\mathbf{2}}\right]=\mathbf{K}_{\mathbf{a} 2}$ for a diprotic (or triprotic) acid

Triprotic Acid (has a third equilibrium table)

- The first equilibrium table results in $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\left[\mathrm{H}_{2} \mathrm{~A}^{-1}\right]=\mathrm{x}=\sqrt{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{3} \mathrm{~A}\right]_{0}}$
- The second equilibrium table results in $\left[\mathrm{HA}^{-2}\right]=y=K_{a 2}$
- Triprotic acids have a third proton and a third equilibrium table.

$\mathrm{HA}^{-2}+\mathrm{H}_{2} \mathrm{O}$	$\stackrel{\mathrm{A}^{-3}}{ }+$	$\mathrm{H}_{3} \mathrm{O}^{+1}$
$\mathrm{~K}_{\mathrm{a} 2}$	0	x
-z	+z	+z
$\left(\mathrm{K}_{\mathrm{a} 2}-\mathrm{z}\right)$	z	$\mathrm{x}+\mathrm{z}$

$-\quad \mathrm{K}_{\mathrm{a} 3}=\frac{(\mathrm{z})(\mathrm{x}+\mathrm{z})}{\left(\mathrm{K}_{\mathrm{A} 2}-\mathrm{z}\right)}=\frac{\mathrm{zx}}{\mathrm{K}_{\mathrm{a} 2}} \quad$ and $\left[\mathrm{A}^{-\mathbf{3}}\right]=\mathrm{z}=\frac{\mathbf{K}_{\mathrm{a} 2} \mathbf{K}_{\mathrm{a} 3}}{\mathrm{x}}=\frac{\mathbf{K}_{\mathrm{a} 2} \mathbf{K}_{\mathrm{a} 3}}{\sqrt{\mathbf{K}_{\mathrm{a} 1}\left[\mathbf{H}_{3} \mathbf{A}\right]_{\mathbf{0}}}}$
Base Ionization Constants and Equilibria

- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+1}+\mathrm{OH}^{-1}$
$-\quad \mathbf{K}_{\mathbf{b}}=\frac{\left[\mathrm{NH}_{4}{ }^{+1}\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{NH}_{3}\right]}=1.76 \times 10^{-5}$
- $\quad \mathbf{p K} \mathbf{K}_{\mathbf{b}}=-\log _{10}\left(\mathbf{K}_{\mathbf{b}}\right)=4.75$
$-\quad \mathbf{K}_{\mathbf{b}}=\mathbf{1 0}^{-\mathbf{p K b}}=\mathbf{1 0}^{-4.75}=1.76 \times 10^{-5}$

Ex 16.05 Determine pH for a Basic Solution of 0.015 M Trimethylamine $\left(\mathrm{K}_{\mathrm{b}}=6.3 \times 10^{-5}\right)$

- $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HN}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+1}+\mathrm{OH}^{-1}$

0.015	0	0
-x	+x	+x
$(0.015-\mathrm{x})$	x	x

$-\quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{3}^{+1}\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right]}=\frac{\mathrm{x}^{2}}{(0.015-\mathrm{x})}=\frac{\mathrm{x}^{2}}{(0.015)}=6.3 \times 10^{-5}$

- $\quad \mathrm{x}^{2}=\mathrm{K}_{\mathrm{b}} \times[\text { Base }]_{0}=\left(6.3 \times 10^{-5}\right) \times(0.015)=9.45 \times 10^{-7}$
- $\left[\mathrm{OH}^{-1}\right]=\left[\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+1}\right]=\mathrm{x}=\sqrt{\mathrm{K}_{\mathrm{b}}[\text { Base }]_{0}}=9.72 \times 10^{-4} \mathrm{M}$
- $\mathrm{pOH}=-\log (\mathrm{x})=3 . \underline{0} 1$
- $\mathrm{pH}=14.00-3 . \underline{0} 1=10 . \underline{99}=11.0$

Acid-Base Properties of salt solutions: Salts can be acidic, basic, or neutral
$-\mathrm{NaCN}(\mathrm{s}) \rightleftharpoons \mathrm{Na}^{+1}+\mathrm{CN}^{-1}$
Na^{+1} is not reactive with $\mathrm{H}_{2} \mathrm{O}$, but CN^{-1} is a weak base and has a Kb expression.

$$
\mathrm{CN}^{-1}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-1} \quad \mathrm{~K}_{\mathrm{b}}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{CN}^{-1}\right]}=2.0 \times 10^{-5}
$$

- Reaction of an acid or a base with water is called a hydrolysis (acid/base can be ion as well)
- For example, $\mathrm{NH}_{4}{ }^{+1}$ is an acid with a hydrolysis, and its reaction has a Ka expression.

$$
\mathrm{NH}_{4}^{+1}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+1} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]}{\left[\mathrm{NH}_{4}^{+1}\right]}=5.67 \times 10^{-10}
$$

Ex 16.06 Acidity and Basicity of Ionic Salts

- Conjugate ions of strong acids/bases, such as of HCl and LiOH , do not hydrolyze.

So, salts containing both conjugates together, such as LiCl , are neutral.

- Salts with the conjugates of a strong base and a weak acid, such as KF, are basic.
F^{-1} is the conjugate of the weak acid HF. It will hydrolyze and it is a base.
- Salts with the conjugates of a weak base and a strong acid, such as $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, are acidic.
Pb^{+2} is the conjugate of the weak base $\mathrm{Pb}(\mathrm{OH})_{2}$. It will hydrolyze and it is an acid.
- Salts with the conjugates of both a weak base and a weak acid, such as $\mathrm{NH}_{4} \mathrm{ClO}$, have two ions that hydrolyze.
So, they can be basic or acidic depending on the components.
K_{a} for $\mathrm{NH}_{4}{ }^{+1}$ is 5.67×10^{-10}, and K_{b} for ClO^{-1} is 3.5×10^{-7}.
The K_{b} is larger than the K_{a}, so $\mathrm{NH}_{4} \mathrm{ClO}$ is basic.

Ionization Constants (K_{a} and K_{b}) for a Pair of Conjugates
$-\mathrm{HClO}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons \mathrm{ClO}_{(\text {(aq) }}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{a}}$

- For a pair of conjugates $\mathbf{K}_{\mathrm{a}} \times \mathbf{K}_{\mathrm{b}}=\mathbf{K}_{\mathbf{w}}=\mathbf{1 . 0 0} \times \mathbf{1 0}^{-14}$
- Also, $\mathbf{p K} \mathbf{K}_{\mathbf{a}}+\mathbf{p K} \mathbf{b}=\mathbf{p K} \mathbf{w}=\mathbf{1 4 . 0 0}$

Ex 16.07 a. Find K_{b} for ClO^{-1} if K_{a} for HClO is 2.9×10^{-8}

$$
\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \div \mathrm{K}_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) \div\left(2.9 \times 10^{-8}\right)=3.5 \times 10^{-7}
$$

b. Find K_{a} for $\mathrm{NH}_{4}{ }^{+1}$ if K_{b} for $\mathrm{NH}_{3}=1.76 \times 10^{-5}$

$$
K_{a}=K_{w} \div K_{b}=\left(1.0 \times 10^{-14}\right) \div\left(1.76 \times 10^{-5}\right)=5.68 \times 10^{-10}
$$

Ex 16.08 Determine the pH of a Sodium Benzoate Salt Solution (0.100 M NaBnz)

$$
\begin{array}{lrrl}
\mathrm{Bnz}^{-1}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{HBnz}+\mathrm{OH}^{-1} & \mathrm{~K}_{\mathrm{a}} \text { of } \mathrm{HBnz}=6.25 \times 10^{-5} \quad \mathrm{~K}_{\mathrm{b}} \text { of } \mathrm{Bnz}^{-1}=\mathrm{K}_{\mathrm{w}} \div \mathrm{K}_{\mathrm{a}} \\
0.100 & 0 & 0 & \mathrm{~K}_{\mathrm{b}}=\left(1.00 \times 10^{-14}\right) \div\left(6.25 \times 10^{-5}\right)=1.60 \times 10^{-10} \\
-\mathrm{x} & +\mathrm{x}+\mathrm{x} & \mathrm{~K}_{\mathrm{b}}=\frac{(\mathrm{x})(\mathrm{x})}{(0.100-\mathrm{x})}=\frac{\mathrm{x}^{2}}{0.100}=1.60 \times 10^{-10}
\end{array} \begin{array}{lll}
\\
\hline 0.100-\mathrm{x} & \mathrm{x} & \mathrm{x}
\end{array} \begin{aligned}
& {\left[\mathrm{OH}^{-1}\right]=\mathrm{x}=\sqrt{0.100 \times \mathrm{Kb}}=\sqrt{16.0 \times 10^{-12}}=4.00 \times 10^{-6}} \\
& \\
&
\end{aligned}
$$

Common Ion Effect

- The common ion effect is a shift in equilibrium (usually to left) that is caused by adding a second solute which possesses an ion in the reaction.
- For acetic acid, below, we can add HCl , which provides $\mathrm{H}_{3} \mathrm{O}^{+1}$.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}
$$

- $\quad \mathrm{H}_{3} \mathrm{O}^{+1}$ is on the product side, so the equilibrium shifts to the left. Less acetic acid is dissociated, so this decreases the degree of ionization.
- Adding OH^{-1} would remove $\mathrm{H}_{3} \mathrm{O}^{+1}$, which would create the opposite effect.

The equilibrium would shift to the right, and more acetic acid would be dissociated.
Common Ion Effect is similar for a weakly-soluble base: $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{+2}{ }_{(\text {aq })}+2 \mathrm{OH}^{-1}{ }_{\text {(aq) }}$

- Solubility Product: $K_{\text {sp }}=\left[\mathbf{C a}^{+2}{ }_{(\mathrm{aq})}\right]\left[\mathrm{OH}^{-1}{ }_{(\mathrm{aq})}\right]^{2}$
- The solid is not included in the $\mathrm{K}_{\text {sp }}$! Pure solids are excluded from equilibrium constants.
- Molar solubility (molsol) is the effective $\mathrm{mol} / \mathrm{L}$ of the dissolved solid.
- Without a common ion, molsol $=\left[\mathrm{Ca}^{+2}\right]=(1 / 2)\left[\mathrm{OH}^{-1}\right]$.
- If another source of Ca^{+2} (such as CaCl_{2}) is added, then eqm shifts to left as product is added.
- Also, molsol no longer equals $\left[\mathrm{Ca}^{+2}\right]$. Molsol will be decreased as eqm shifts to left.

That is, less of the solid reactant dissolves because of the additional Ca^{+2}.

- But molsol still equals $(1 / 2)\left[\mathrm{OH}^{-1}\right]$, and can be calculated by titrating with an acid. At the stoichiometric point: $\quad \mathrm{mol} \mathrm{H}{ }^{+}$added $=\mathrm{mol} \mathrm{OH}^{-1}$ in sample
- For any slightly soluble salt, addition of a second salt containing one of the ions involved will shift the equilibrium to the left and decrease the molsol.
- Note that K_{sp} is a constant and does not change.

Ex 16.09 Degree of Ionization for $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}=1.75 \times 10^{-5}\right)$ with 0.0100 M HCl

- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}$

0.200	0	0.0100
-x	+x	+x
$0.200-\mathrm{x}$	+x	$0.0100+\mathrm{x}$

- $K_{a}=1.75 \times 10^{-5}=\frac{(0.0100+x)(x)}{(0.200-x)}=\frac{(0.0100)(x)}{(0.200)}=(0.0500)(x)$
- $\left[\mathrm{CH}_{3} \mathrm{COO}^{-1}\right]=\mathrm{x}=\frac{\left(1.75 \times 10^{-5}\right)}{(0.0500)}=3.50 \times 10^{-4} \mathrm{M}$
- Degree of Ionization $=\frac{\left(3.50 \times 10^{-4}\right)}{(0.200)}=1.75 \times 10^{-3}=0.175 \%$
- The degree of ionization for $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ without HCl is 0.94%, which can be determined using the same equation as in Examples 16.01 and 16.02.
- The degree of ionization is much smaller with HCl present because the added $\mathrm{H}_{3} \mathrm{O}^{+1}$ shifts the equilibrium back to the left.

Buffers - A solution which resists changes in pH when small amounts of acid or base are added.

- A buffer contains either a weak acid or base, along with the conjugate ion.

So, the buffer solution possesses both an acid component and a base component.

- Two important characteristics: capacity and pH .
- Capacity is the amount of acid or base needed to create a large pH change, which depends on the amount of each conjugate that is in solution.
- The pH is determined by the K_{a} and by the ratio of the two conjugates' concentrations.

Ex 16.10 Determine pH for Solution of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$

\[

\]

Ex 16.11 Determine the pH of 40 mL of $0.100 \mathrm{M} \mathrm{NH}_{3}$ mixed with 60 mL of $0.100 \mathrm{M} \mathrm{NH}_{4}{ }^{+1}$

- $\quad\left[\mathrm{NH}_{3}\right]=(0.100 \mathrm{M})(0.0400 \mathrm{~L}) /(0.100 \mathrm{~L})=0.0400 \mathrm{M} \quad\left(\mathrm{M}_{2}=\mathrm{M}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2}\right.$ and $\left.\mathrm{V}_{2}=0.100 \mathrm{~L}\right)$
- $\quad\left[\mathrm{NH}_{4}{ }^{+1}\right]=(0.100 \mathrm{M})(0.0600 \mathrm{~L}) /(0.100 \mathrm{~L})=0.0600 \mathrm{M}$
$-\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+1}+\mathrm{OH}^{-1}$

0.0400	0.0600 +x	0
-x	x	
$0.0400-\mathrm{x}$	$0.0600+\mathrm{x}$	+x

- $\mathrm{K}_{\mathrm{b}}=1.76 \times 10^{-5}=\frac{(0.0600+\mathrm{x})(\mathrm{x})}{(0.0400-\mathrm{x})}=\frac{(0.0600)(\mathrm{x})}{(0.0400)}=1.50(\mathrm{x})$
- $\quad \mathrm{x}=\mathrm{K}_{\mathrm{b}} \div 1.50=1.17 \times 10^{-5} \mathrm{M}=\left[\mathrm{OH}^{-1}\right]$
- $\mathrm{pOH}=-\log \left(1.17 \times 10^{-5}\right)=4.93$ and $\mathrm{pH}=14.00-4.93=9.07$

Ex 16.1275 .0 ml with both $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5}\right)$ and $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ is mixed with 10.0 ml of 0.100 M HCl . Determine the pH after mixing.

- $\mathrm{mol} \mathrm{H}_{3} \mathrm{O}^{+1}=(0.0100 \mathrm{~L})(0.100 \mathrm{M})=0.00100 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+1}$
- $\mathrm{H}_{3} \mathrm{O}^{+1}$ will convert $\mathrm{CH}_{3} \mathrm{COO}^{-1}$ into $\mathrm{CH}_{3} \mathrm{COOH}$
- $\quad \mathrm{mol} \mathrm{CH}_{3} \mathrm{COOH}=(0.0750 \mathrm{~L})(0.200 \mathrm{M})+0.00100$
$=0.0150 \mathrm{~mol}+0.00100 \mathrm{~mol}=0.0160 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$
- $\quad\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=(0.0160 \mathrm{~mol}) \div(0.0850 \mathrm{~L})=0.188 \mathrm{M}$
- $\quad \mathrm{mol} \mathrm{CH}_{3} \mathrm{COO}^{-1}=(0.0750 \mathrm{~L})(0.100 \mathrm{M})-0.00100 \mathrm{~mol}$
$=0.00750 \mathrm{~mol}-0.00100 \mathrm{~mol}=0.00650 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COO}^{-1}$
- $\left[\mathrm{CH}_{3} \mathrm{COO}^{-1}\right]=(0.00650 \mathrm{~mol}) \div(0.0850 \mathrm{~L})=0.0765 \mathrm{M}$
- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1} \quad \mathrm{~K}_{\mathrm{a}}=1.75 \times 10^{-5}=\frac{(0.0765+\mathrm{x})(\mathrm{x})}{(0.188-\mathrm{x})}=\frac{(0.0765)(\mathrm{x})}{(0.188)}$

0.188	0.0765 +x	0 +x
$0.188-\mathrm{x}$	$0.0765+\mathrm{x}$	+x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=(0.407)(\mathrm{x}) \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\mathrm{x}=\mathrm{K}_{\mathrm{a}} \div 0.407=4.30 \times 10^{-5} \mathrm{M}} \\
& \mathrm{pH}=-\log \left(4.30 \times 10^{-5}\right)=4.37
\end{aligned}
$$

Henderson-Hasselbalch Equation

- Rearrange the K_{a} equation and take the $-\log : \quad-\log \left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=-\log \left[\frac{\left(\mathrm{K}_{\mathrm{a}}\right)[\mathrm{HA}]}{\left[\mathrm{A}^{-1}\right]}\right]$
- This is the result for a weak acid buffer: $\quad \mathbf{p H}=\mathbf{p K} \mathbf{a}_{\mathbf{a}}+\log \left(\frac{\left[\mathbf{A}^{-1}\right]}{[\mathbf{H A}]}\right)$
- This is the result for a weak base buffer:

$$
\mathbf{p H}=\left(\mathbf{p K}_{\mathbf{w}}-\mathbf{p} K_{\mathbf{b}}\right)+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{HB}^{+\mathbf{1}}\right]}\right)
$$

Apply the Henderson-Hasselbalch equation to Example 16.10

- $\mathrm{pK}_{\mathrm{a}}=-\log \left(1.75 \times 10^{-5}\right)=4.76$
$-\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-1}\right]}{[\mathrm{HA}]}\right)=4.76+\log \left(\frac{0.100}{0.200}\right)=4.76+\log (1 / 2)=4.76-0.301=4.46$

Apply the Henderson-Hasselbalch equation to Example 16.11

- pK_{b} of $\mathrm{NH}_{3}=-\log \left(1.76 \times 10^{-5}\right)=4.75 \mathrm{pK}_{\mathrm{a}}$ of $\mathrm{NH}_{4}{ }^{+1}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pK} \mathrm{b}_{\mathrm{b}}=14.00-4.75=9.25$
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{HB}^{+1}\right]}\right)=9.25+\log \left(\frac{0.0400}{0.0600}\right)=9.25-0.18=9.07$

Acid-Base Titration Curves: Plotting pH vs. Volume of Titrant

- Equivalence Point is the point in a titration where stoichiometric amount of titrant is added.

At this point, the solution is neutralized precisely so that: $\mathrm{mol} \mathrm{OH}^{-1}=\mathrm{mol} \mathrm{H}_{3} \mathrm{O}^{+1}$

- $\quad \mathrm{pH}=7$ at the equivalence point if both strong acid and strong base are used.
- Weak acids/bases have conjugates that hydrolyze, so the pH is not 7 at their equiv point.
- Titration of a weak acid yields a basic conjugate, so $\mathrm{pH}>7$ at its equivalence point.
- Conversely, a weak base has an acidic conjugate and $\mathrm{pH}<7$ at its equivalence point.
- If the equivalence point is unknown, then the indicator selection is difficult.

Ex 16.14 0.0250 L of 0.100 M HBnz is titrated to its equivalence point with 0.100 M NaOH

- Find the equivalence point pH if $\mathrm{K}_{\mathrm{a}}=6.24 \times 10^{-5}$
- $\quad \mathrm{mol} \mathrm{OH}^{-1}$ added $=\mathrm{mol} \mathrm{HBnz}$ in sample $=(0.0250 \mathrm{~L})(0.100 \mathrm{M})=0.00250 \mathrm{~mol}$
- All of the 0.00250 moles of HBnz are converted to Bnz^{-1} at the equivalence point.
- Total $\mathrm{V}=0.0250 \mathrm{~L}+0.0250 \mathrm{~L}=0.0500 \mathrm{~L}$
- At the equivalence point, we have $\left[\mathrm{Bnz}^{-1}\right]=$ moles $/ \mathrm{V}=0.00250 \mathrm{~mol} / 0.0500 \mathrm{~L}=0.0500 \mathrm{M}$
- Use this value as the initial concentration for the Bnz^{-1} hydrolysis reaction seen in Example 16.08. Solve the table to find the equivalence point pH .
- $\mathrm{Bnz}^{-1}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HBnz}+\mathrm{OH}^{-1}$

0.0500	0	0
-x	x	x
$0.0500-\mathrm{x}$	x	x

- $\mathrm{K}_{\mathrm{a}}=6.24 \times 10^{-5} \quad \mathrm{~K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=1.60 \times 10^{-10}=\frac{\left[\mathrm{OH}^{-1}\right][\mathrm{HBnz}]}{\left[\mathrm{Bnz}^{-1}\right]}=\frac{\mathrm{x}^{2}}{0.0500-\mathrm{x}}=\frac{\mathrm{x}^{2}}{0.0500}$
- $\mathrm{x}=\sqrt{8.00 \times 10^{-12}}=2.83 \times 10^{-6}=\left[\mathrm{OH}^{-1}\right] \quad \mathrm{pOH}=5.55 \mathrm{pH}=14.00-5.55=8.45$

