Ch 16 Acid-Base Equilibria (OpenStax Sections <u>14.3</u>, <u>14.4</u>, <u>14.5</u>, <u>14.6</u>, and <u>14.7</u>)

Finding $[H_3O^{+1}]$ or $[OH^{-1}]$ for weak acids and bases involves equilibrium constants. This is because they do not dissociate fully and they have a reversible <u>hydrolysis reaction</u>.

-	Acid Ionization Constan	$\mathbf{\underline{t}} \ \mathbf{K}_{\mathbf{a}} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+1}][\mathrm{A}^{-1}]}{[\mathrm{HA}]} \text{ is the expression for HA} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{A}^{-1} + \mathrm{H}_{3}\mathrm{O}^{+1}$
-	For acetic acid (CH ₃ COO	DH) $K_a = \frac{[H_3O^{+1}][CH_3COO^{-1}]}{[CH_3COOH]} = 1.7 \times 10^{-5}$
-	Correspondingly	$\mathbf{pK}_{a} = -\log_{10}(\mathbf{K}_{a})$ and $\mathbf{K}_{a} = 10^{-\mathbf{pK}a}$
-	For acetic acid	$pK_a = -\log(1.7 \times 10^{-5}) = 4.75$ and $K_a = 10^{-(4.75)} = 1.7 \times 10^{-5}$
-	This is similar to	$pH = -\log_{10}[H_3O^{+1}]$ and $[H_3O^{+1}] = 10^{-pH}$

K_a must be determined experimentally (two general methods)

- Degree of ionization (or % ionization) is determined by measuring electrical conductivity or another colligative property (that depends only on total moles of all solutes).
- Measure pH or $[H_3O^{+1}]$ directly. Then, calculate all other concentrations with an eqm table.

Ex 16.01 0.100 M C₆H₅COOH (benzoic acid) has pH = 2.602. Find K_a and degree of ionization.

- HBnz + H₂O
$$\rightleftharpoons$$
 Bnz⁻¹ + H₃O⁺¹ $x = [H_3O^{+1}] = 10^{-pH} = 10^{-2.602} = 2.50 \times 10^{-3} M$
0.100 0 0 $\frac{-x + x + x}{100 - x} = \frac{10^{-2.602} - 2.50 \times 10^{-3} M}{100 - x}$
0.100 - x x x x (11)

- Generally, variable in denominator (- x) can be neglected for weak acid/base if $\frac{[HA]_0}{K_a} > 100$.

- Degree of Ionization = $\frac{[A^{-1}]_{eqm}}{[HA]_0}$ [Bnz⁻¹]_{eqm} ÷ [HBnz]₀ = x ÷ 0.100 = (2.50 × 10⁻³) ÷ (0.100) = 0.0250 (equivalent to 2.50 %)

Ex 16.02 For 0.0153 M HBnz, determine pH and degree of ionization using $K_a = 6.25 \times 10^{-5}$.

- HBnz + H₂O \rightleftharpoons Bnz⁻¹ + H₃O⁺¹ $\frac{[HA]_0}{K_a} = \frac{(0.0153)}{(6.25 \times 10^{-5})} = 240 \ (> 100)$ 0.0153 0 0 So, we can neglect x in the denominator. $\frac{-x}{0.0153 - x} + \frac{x}{x} + \frac{x}{x}$ It will cause some error in x, but it will be < 10%. - Ka = $6.25 \times 10^{-5} = \frac{[H_3O^{+1}][Bnz^{-1}]}{[HBnz]} = \frac{x^2}{(0.0153 - x)} = \frac{x^2}{0.0153} = \frac{x^2}{1.53 \times 10^{-2}}$ - $x^2 = 9.56 \times 10^{-7} \ [H_3O^{+1}] = x = 9.77 \times 10^{-4} \ M \ PH = -\log(9.77 \times 10^{-4}) = 3.01$ - Degree of Ionization = $[Bnz^{-1}]_{eqm} \div [HBnz]_0 = x \div 0.0153 = 0.0639 \ (or \ 6.39 \ \%)$ Note that Degree of Ionization depends on both K_a and [HA]. Ex 16.03 Determine pH of 2.05 g Salicylic Acid (HSal) in 0.500 L solution if $K_a = 1.05 \times 10^{-3}$.

-	Moles HSal = $\frac{2.05 \text{ g}}{138.12 \frac{\text{g}}{\text{mol}}} = 0.0148 \text{ mol}$	$[\text{HSal}]_0 = \frac{0.0148 \text{ mol}}{0.500 \text{ L}} = 0.0296 \text{ M}$
-	$HSal + H_2O \rightleftharpoons Sal^{-1} + H_3O^{+1}$	
	0.0296 0 0	
	$-\mathbf{x}$ $+\mathbf{x}$ $+\mathbf{x}$	
	0.0296 - x x x	
-	$K_a = 1.05 \times 10^{-3} = \frac{[H_3O^{+1}][Sal^{-1}]}{[HSal]} = \frac{x^2}{(0.0296 - 1)^2}$	- x)
-	We cannot neglect x in this problem because [H	$[Sal]_0 / K_a = 28.2$, which is less than 100.
-	First, rearrange the equation to a single line:	$x^2 = (1.05 \times 10^{-3})(0.0296 - x)$
-	Then, rearrange to set equation equal to zero:	$x^{2} + (1.05 \times 10^{-3})(x) - (3.11 \times 10^{-5}) = 0$
-	The solution to this quadratic equation is:	$\mathbf{x} = (\frac{1}{2}) \times \left[-\mathrm{Ka} + \sqrt{\mathrm{Ka}^2 + 4[\mathrm{HSal}]_0 \mathrm{Ka}} \right]$
-	Substituting with the values above, we get:	$\mathbf{x} = (\frac{1}{2}) \times [-(1.05 \times 10^{-3}) + (1.12 \times 10^{-2})]$
-	The final result is:	$x = 5.08 \times 10^{-3} M = [Sal^{-1}] = [H_3O^{+1}]$
-	Ionization = $\frac{x}{[HSal]_0} = \frac{5.08 \times 10^{-3}}{0.0296} = 0.172$	$pH = -\log(5.08 \times 10^{-3}) = 2.29$
_		

Polyprotic Acids (Formula has more than one H⁺¹)

 - $H_2SO_4 + H_2O \rightarrow HSO_4^{-1} + H_3O^{+1}$ $HSO_4^{-1} + H_2O \rightarrow SO_4^{-2} + H_3O^{+1}$ - $H_2CO_3 + H_2O \rightarrow HCO_3^{-1} + H_3O^{+1}$ $HCO_3^{-1} + H_2O \rightarrow CO_3^{-2} + H_3O^{+1}$ $K_{a1} > 10^{+6}$ (strong acid) $K_{a2} = 1.1 \times 10^{-2}$ (weak acid) $K_{a1} = 4.3 \times 10^{-7}$ $K_{a2} = 4.8 \times 10^{-11}$

- $\mathbf{K_{a1}} > \mathbf{K_{a2}} > \mathbf{K_{a3}}$ (for example $\mathrm{H_3PO_4} > \mathrm{H_2PO_4}^{-1} > \mathrm{HPO_4}^{-2}$) The increasing negative charges on the subsequent acids decrease the acidity.

Ex 16.04 Determine pH and Ion Concentrations for a 0.100 M Adipic Acid (H₂Adi) solution.

- Adipic acid is diprotic with $K_{a1} = 3.82 \times 10^{-5}$ and $K_{a2} = 3.87 \times 10^{-6}$.

- $\begin{array}{lll} & & H_{2}Adi \ + H_{2}O \rightleftharpoons HAdi^{-1} + H_{3}O^{+1} \\ & 0.100 & 0 & 0 \\ & \frac{-x}{4} + x + x \\ \hline 0.100 x & x & x \\ & & K_{a1} = 3.82 \times 10^{-5} = \frac{[H_{3}O^{+1}][HAdi^{-1}]}{[H_{2}Adi]} = \frac{x^{2}}{(0.100 x)} = \frac{x^{2}}{0.100} \\ & & x^{2} = K_{a1}[H_{2}A]_{0} = 3.82 \times 10^{-6} \quad \text{and} \quad x = \sqrt{K_{a1}[H_{2}A]_{0}} = 1.95 \times 10^{-3} \text{ M} \\ & & \text{Ignore the change in } [H_{3}O^{+1}] \text{ due to the second reaction.} \\ & \text{The second acid } (HAdi^{-1}) \text{ is much weaker than first acid } (H_{2}Adi). \\ & & \text{So:} \qquad [H_{3}O^{+1}] = [HAdi^{-1}] = x = 1.95 \times 10^{-3} \text{ M} \\ & & \text{And:} \qquad pH = -\log(1.95 \times 10^{-3}) = 2.71 \end{array}$
- Use x for the starting concentrations of both H_3O^{+1} and $HAdi^{-1}$ in the 2nd table (next page).

- $HAdi^{-1} + H_2O \rightleftharpoons Adi^{-2} + H_3O^{+1}$ $1.95 \times 10^{-3} \qquad \qquad 0 \qquad 1.95 {\times} 10^{-3}$ $\frac{-y + y + y}{(1.95 \times 10^{-3}) - y} \frac{+y}{y} (1.95 \times 10^{-3}) + y$ $- \quad K_{a2} = 3.87 \times 10^{-6} = \frac{[H_3 O^{+1}][A di^{-2}]}{[HA di^{-1}]} = \frac{[(1.95 \times 10^{-3}) + y][y]}{[(1.95 \times 10^{-3}) - y]} = \frac{[1.95 \times 10^{-3}][y]}{[1.95 \times 10^{-3}]} = y$
- $y \ll 1.95 \times 10^{-3}$ so $[(1.95 \times 10^{-3}) + y] = [(1.95 \times 10^{-3}) y] = 1.95 \times 10^{-3}$ M
- This makes both of those terms cancel and $K_{A2} = 3.87 \times 10^{-6} \text{ M} = y = [\text{Adi}^{-2}]$
- In general $[A^{-2}] = K_{a2}$ for a diprotic (or triprotic) acid

Triprotic Acid (has a third equilibrium table)

- The first equilibrium table results in $[H_3O^{+1}] = [H_2A^{-1}] = x = \sqrt{K_{a1}[H_3A]_0}$
- The second equilibrium table results in $[HA^{-2}] = y = K_{a2}$
- Triprotic acids have a third proton and a third equilibrium table.

 $HA^{-2} + H_2O \rightleftharpoons A^{-3} + H_3O^{+1}$ K_{a2} 0 $\frac{\mathbf{K}_{a2}}{(\mathbf{K}_{a}-\mathbf{z})} + \frac{\mathbf{z}_{a}+\mathbf{z}_{a}}{\mathbf{z}_{a}+\mathbf{z}_{a}}$

-
$$K_{a3} = \frac{(z)(x+z)}{(K_{A2}-z)} = \frac{zx}{K_{a2}}$$
 and $[A^{-3}] = z = \frac{K_{a2}K_{a3}}{x} = \frac{K_{a2}K_{a3}}{\sqrt{K_{a1}[H_3A]_0}}$

Base Ionization Constants and Equilibria

- $NH_3 + H_2O \rightleftharpoons NH_4^{+1} + OH^{-1}$ $\mathbf{K_b} = \frac{[\mathrm{NH_4}^{+1}][\mathrm{OH}^{-1}]}{[\mathrm{NH_2}]} = 1.76 \times 10^{-5}$
- $\mathbf{pK_b} = -\log_{10}(\mathbf{K_b}) = 4.75$ $\mathbf{K_b} = \mathbf{10}^{-\mathbf{pKb}} = \mathbf{10}^{-4.75} = 1.76 \times 10^{-5}$

Ex 16.05 Determine pH for a Basic Solution of 0. 015 M Trimethylamine ($K_b = 6.3 \times 10^{-5}$)

- N(CH₃)₃ + H₂O
$$\rightleftharpoons$$
 HN(CH₃)₃⁺¹ + OH⁻¹
0.015 0 0
 $\frac{-x}{(0.015 - x)} + \frac{x}{x} + \frac{x}{x}$
- K_b = $\frac{[HN(CH_3)_3^{+1}][OH^{-1}]}{[N(CH_3)_3]} = \frac{x^2}{(0.015 - x)} = \frac{x^2}{(0.015)} = 6.3 \times 10^{-5}$
- x² = K_b × [Base]₀ = (6.3 × 10⁻⁵) × (0.015) = 9.45 × 10⁻⁷
- [OH⁻¹] = [HN(CH₃)₃⁺¹] = x = $\sqrt{K_b}[Base]_0 = 9.72 \times 10^{-4} M$
- pOH = $-\log(x) = 3.01$
- pH = 14.00 - 3.01 = 10.99 = 11.0

Acid-Base Properties of salt solutions: Salts can be acidic, basic, or neutral

- NaCN(s) \rightleftharpoons Na⁺¹ + CN⁻¹ Na⁺¹ is not reactive with H₂O, but CN⁻¹ is a weak base and has a Kb expression. CN⁻¹ + H₂O \rightleftharpoons HCN + OH⁻¹ $K_b = \frac{[\text{HCN}][\text{OH}^{-1}]}{[\text{CN}^{-1}]} = 2.0 \times 10^{-5}$
- Reaction of an acid or a base with water is called a hydrolysis (acid/base can be ion as well)
- For example, NH_4^{+1} is an acid with a hydrolysis, and its reaction has a Ka expression.

$$NH_4^{+1} + H_2O \rightleftharpoons NH_3 + H_3O^{+1}$$
 $K_a = \frac{[NH_3][H_3O^{+1}]}{[NH_4^{+1}]} = 5.67 \times 10^{-10}$

Ex 16.06 Acidity and Basicity of Ionic Salts

- Conjugate ions of strong acids/bases, such as of HCl and LiOH, do not hydrolyze. So, salts containing both conjugates together, such as LiCl, are **neutral**.
- Salts with the conjugates of a strong base and a weak acid, such as KF, are **basic**. F¹ is the conjugate of the weak acid HF. It will hydrolyze and it is a base.
- Salts with the conjugates of a weak base and a strong acid, such as $Pb(NO_3)_2$, are **acidic**. Pb^{+2} is the conjugate of the weak base $Pb(OH)_2$. It will hydrolyze and it is an acid.
- Salts with the conjugates of both a weak base and a weak acid, such as NH₄ClO, have two ions that hydrolyze. So, they can be **basic or acidic** depending on the components. K_a for NH₄⁺¹ is 5.67 × 10⁻¹⁰, and K_b for ClO⁻¹ is 3.5×10^{-7} . The K_b is larger than the K_a, so NH₄ClO is basic.

Ionization Constants (Ka and Kb) for a Pair of Conjugates

- $HClO_{(aq)} + H_2O_{(L)} \rightleftharpoons ClO^{-1}_{(aq)} + H_3O^{+1}_{(aq)} \qquad K_a$ $\frac{ClO^{-1}_{(aq)} + H_2O_{(L)} \rightleftharpoons HClO_{(aq)} + OH^{-1}_{(aq)} \qquad K_b}{2H_2O_{(L)}} \rightleftharpoons H_3O^{+1}_{(aq)} + OH^{-1}_{(aq)} \qquad K_w$
- For a pair of conjugates $K_a \times K_b = K_w = 1.00 \times 10^{-14}$
- Also, $pK_a + pK_b = pK_w = 14.00$

$$\begin{array}{l} \text{Ex 16.07 a. Find } K_b \mbox{ for ClO}^{-1} \mbox{ if } K_a \mbox{ for HClO is } 2.9 \times 10^{-8} \\ K_b = K_w \div K_a = (1.0 \times 10^{-14}) \div (2.9 \times 10^{-8}) = 3.5 \times 10^{-7} \\ \text{b. Find } K_a \mbox{ for } NH_4^{+1} \mbox{ if } K_b \mbox{ for } NH_3 = 1.76 \times 10^{-5} \\ K_a = K_w \div K_b = (1.0 \times 10^{-14}) \div (1.76 \times 10^{-5}) = 5.68 \times 10^{-10} \\ \end{array}$$

Ex 16.08 Determine the pH of a Sodium Benzoate Salt Solution (0.100 M NaBnz) Bnz⁻¹ + H₂O \rightleftharpoons HBnz + OH⁻¹ K_a of HBnz = 6.25 × 10⁻⁵ K_b of Bnz⁻¹ = K_w ÷ K_a 0.100 0 0 K_b = (1.00 × 10⁻¹⁴) ÷ (6.25 × 10⁻⁵) = 1.60 × 10⁻¹⁰ $\underline{-x} + x + x$ K_b = $\frac{(x)(x)}{(0.100 - x)} = \frac{x^2}{0.100} = 1.60 × 10^{-10}$ 0.100 - x x x [OH⁻¹] = x = $\sqrt{0.100 \times \text{Kb}} = \sqrt{16.0 \times 10^{-12}} = 4.00 \times 10^{-6}$ pOH = $-\log[\text{OH}^{-1}] = 5.40$ and pH = 14.00 - 5.40 = 8.60 Common Ion Effect

- The common ion effect is a shift in equilibrium (usually to left) that is caused by adding a second solute which possesses an ion in the reaction.
- For acetic acid, below, we can add HCl, which provides H_3O^{+1} .
 - $CH_3COOH + H_2O \rightleftharpoons CH_3COO^{-1} + H_3O^{+1}$
- H_3O^{+1} is on the product side, so the equilibrium shifts to the left. Less acetic acid is dissociated, so this decreases the degree of ionization.
- Adding OH^{-1} would remove H_3O^{+1} , which would create the opposite effect. The equilibrium would shift to the right, and more acetic acid would be dissociated.

Common Ion Effect is similar for a weakly-soluble base: $Ca(OH)_{2(s)} \rightleftharpoons Ca^{+2}_{(aq)} + 2OH^{-1}_{(aq)}$

- Solubility Product: $K_{sp} = [Ca^{+2}_{(aq)}][OH^{-1}_{(aq)}]^2$
- The solid is not included in the K_{sp}! Pure solids are excluded from equilibrium constants.
- **Molar solubility (molsol)** is the effective mol/L of the dissolved solid.
- Without a common ion, $molsol = [Ca^{+2}] = (\frac{1}{2})[OH^{-1}].$
- If another source of Ca^{+2} (such as $CaCl_2$) is added, then eqm shifts to left as product is added.
- Also, molsol no longer equals $[Ca^{+2}]$. Molsol will be decreased as eqm shifts to left. That is, less of the solid reactant dissolves because of the additional Ca^{+2} .
- But molsol still equals $(\frac{1}{2})[OH^{-1}]$, and can be calculated by titrating with an acid. At the stoichiometric point: mol H⁺ added = mol OH⁻¹ in sample
- For any slightly soluble salt, addition of a second salt containing one of the ions involved will shift the equilibrium to the left and decrease the molsol.
- Note that K_{sp} is a constant and does not change.

Ex 16.09 Degree of Ionization for 0.200 M CH₃COOH ($K_a = 1.75 \times 10^{-5}$) with 0.0100 M HCl

-
$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^{-1} + H_3O^{+1}$$

0.200 0 0.0100

$$\frac{-x}{0.200 - x} + \frac{x}{x} + \frac{x}{0.0100 + x}$$

-
$$K_a = 1.75 \times 10^{-5} = \frac{(0.0100 + x)(x)}{(0.200 - x)} = \frac{(0.0100)(x)}{(0.200)} = (0.0500)(x)$$

-
$$[CH_3COO^{-1}] = x = \frac{(1.75 \times 10^{-5})}{(0.0500)} = 3.50 \times 10^{-4} M$$

- Degree of Ionization =
$$\frac{(3.50 \times 10^{-4})}{(0.200)} = 1.75 \times 10^{-3} = 0.175 \%$$

- The degree of ionization for 0.20 M CH₃COOH without HCl is 0.94 %, which can be determined using the same equation as in Examples 16.01 and 16.02.
- The degree of ionization is much smaller with HCl present because the added H_3O^{+1} shifts the equilibrium back to the left.

Buffers - A solution which resists changes in pH when small amounts of acid or base are added.

- A buffer contains either a weak acid or base, along with the conjugate ion.
- So, the buffer solution possesses both an acid component and a base component.
- Two important characteristics: capacity and pH.
- Capacity is the amount of acid or base needed to create a large pH change, which depends on the amount of each conjugate that is in solution.
- The pH is determined by the K_a and by the ratio of the two conjugates' concentrations.

Ex 16.10 Determine pH for Solution of 0.200 M CH₃COOH and 0.100 M CH₃COONa

-	$CH_3COOH + H_2O \rightleftharpoons CH_3COO^{-1} + H_3O^{+1}$			$K_a = 1.75 \times 10^{-5} = \frac{(0.100 + x)(x)}{(0.200 - x)} = \frac{(0.100)(x)}{(0.200)}$	
	0.200	0.100	0	$K_a = (0.500)(x)$	
	$-\mathbf{x}$ $+\mathbf{x}$ $+\mathbf{x}$		+ x	$[H_3O^{+1}] = x = K_a \div 0.500 = 3.50 \times 10^{-5} \text{ M}$	
	0.200 - x	0.100 + x	+ x	$pH = -\log(3.50 \times 10^{-5}) = 4.46$	

Ex 16.11 Determine the pH of 40 mL of 0.100 M NH₃ mixed with 60 mL of 0.100 M NH₄⁺¹

- $[NH_3] = (0.100 \text{ M})(0.0400 \text{ L}) / (0.100 \text{ L}) = 0.0400 \text{ M} \quad (M_2 = M_1 V_1 / V_2 \text{ and } V_2 = 0.100 \text{ L})$
- $[NH_4^{+1}] = (0.100 \text{ M})(0.0600 \text{ L}) / (0.100 \text{ L}) = 0.0600 \text{ M}$

$$- NH_3 + H_2O \rightleftharpoons NH_4^{+1} + OH^{-1} 0.0400 0.0600 0$$

<u>- x</u>	+ x	+ x
0.0400 - x	0.0600 + x	+ x

-
$$K_b = 1.76 \times 10^{-5} = \frac{(0.0600 + x)(x)}{(0.0400 - x)} = \frac{(0.0600)(x)}{(0.0400)} = 1.50(x)$$

-
$$x = K_b \div 1.50 = 1.17 \times 10^{-5} \text{ M} = [\text{OH}^{-1}]$$

- $pOH = -\log(1.17 \times 10^{-5}) = 4.93$ and pH = 14.00 - 4.93 = 9.07

Ex 16.12 75.0 ml with both 0.200 M CH₃COOH ($K_a = 1.7 \times 10^{-5}$) and 0.100 M CH₃COONa is mixed with 10.0 ml of 0.100 M HCl. Determine the pH after mixing.

- mol $H_3O^{+1} = (0.0100 \text{ L})(0.100 \text{ M}) = 0.00100 \text{ mol } H_3O^{+1}$
- H₃O⁺¹ will convert CH₃COO⁻¹ into CH₃COOH
- mol $CH_3COOH = (0.0750 L)(0.200 M) + 0.00100$
- $= 0.0150 \text{ mol} + 0.00100 \text{ mol} = 0.0160 \text{ mol} \text{ CH}_3\text{COOH}$
- $[CH_3COOH] = (0.0160 \text{ mol}) \div (0.0850 \text{ L}) = 0.188 \text{ M}$
- mol $CH_3COO^{-1} = (0.0750 \text{ L})(0.100 \text{ M}) 0.00100 \text{ mol}$
- $= 0.00750 \text{ mol} 0.00100 \text{ mol} = 0.00650 \text{ mol} \text{ CH}_3 \text{COO}^{-1}$
- $[CH_3COO^{-1}] = (0.00650 \text{ mol}) \div (0.0850 \text{ L}) = 0.0765 \text{ M}$

$$\begin{array}{rcl} - & CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-1} + H_{3}O^{+1} & K_{a} = 1.75 \times 10^{-5} = \frac{(0.0765 + x)(x)}{(0.188 - x)} = \frac{(0.0765)(x)}{(0.188)} \\ \hline & 0.188 & 0.0765 & 0 & K_{a} = (0.407)(x) \\ \hline & -x & +x & +x & [H_{3}O^{+1}] = x = K_{a} \div 0.407 = 4.30 \times 10^{-5} \text{ M} \\ \hline & 0.188 - x & 0.0765 + x & +x & pH = -\log(4.30 \times 10^{-5}) = 4.37 \end{array}$$

Henderson-Hasselbalch Equation

- Rearrange the K_a equation and take the log: –
- This is the result for a weak acid buffer:
- This is the result for a weak base buffer:

g:
$$-\log[H_3O^{+1}] = -\log\left[\frac{(K_a)[HA]}{[A^{-1}]}\right]$$

 $\mathbf{pH} = \mathbf{pK}_a + \log\left(\frac{[\mathbf{A}^{-1}]}{[\mathbf{HA}]}\right)$
 $\mathbf{pH} = (\mathbf{pK}_w - \mathbf{pK}_b) + \log\left(\frac{[\mathbf{B}]}{[\mathbf{HB}^{+1}]}\right)$

Apply the Henderson-Hasselbalch equation to Example 16.10

- $pK_a = -\log(1.75 \times 10^{-5}) = 4.76$

$$- pH = pK_a + log\left(\frac{[A^{-1}]}{[HA]}\right) = 4.76 + log\left(\frac{0.100}{0.200}\right) = 4.76 + log(1/2) = 4.76 - 0.301 = 4.46$$

Apply the Henderson-Hasselbalch equation to Example 16.11

- $pK_b \text{ of } NH_3 = -\log(1.76 \times 10^{-5}) = 4.75 \text{ } pK_a \text{ of } NH_4^{+1} = pK_w pK_b = 14.00 4.75 = 9.25$
- $pH = pK_a + log\left(\frac{[B]}{[HB^{+1}]}\right) = 9.25 + log\left(\frac{0.0400}{0.0600}\right) = 9.25 0.18 = 9.07$

Acid-Base Titration Curves: Plotting pH vs. Volume of Titrant

- <u>Equivalence Point</u> is the point in a titration where stoichiometric amount of titrant is added. At this point, the solution is neutralized precisely so that: mol $OH^{-1} = mol H_3O^{+1}$
- pH = 7 at the equivalence point if both strong acid and strong base are used.
- Weak acids/bases have conjugates that hydrolyze, so the pH is not 7 at their equiv point.
- Titration of a weak acid yields a basic conjugate, so pH > 7 at its equivalence point.
- Conversely, a weak base has an acidic conjugate and pH < 7 at its equivalence point.
- If the equivalence point is unknown, then the <u>indicator selection</u> is difficult.

Ex 16.14 0.0250 L of 0.100 M HBnz is titrated to its equivalence point with 0.100 M NaOH

- Find the equivalence point pH if $K_a = 6.24 \times 10^{-5}$
- mol OH^{-1} added = mol HBnz in sample = (0.0250 L)(0.100 M) = 0.00250 mol
- All of the 0.00250 moles of HBnz are converted to Bnz^{-1} at the equivalence point.
- Total V = 0.0250 L + 0.0250 L = 0.0500 L
- At the equivalence point, we have $[Bnz^{-1}] = moles / V = 0.00250 \text{ mol} / 0.0500 \text{ L} = 0.0500 \text{ M}$
- Use this value as the initial concentration for the Bnz⁻¹ hydrolysis reaction seen in Example 16.08. Solve the table to find the equivalence point pH.
- $Bnz^{-1} + H_2O \rightleftharpoons HBnz + OH^{-1}$

$$\begin{array}{cccc} 0.0500 & 0 & 0 \\ \underline{-x} & \underline{x} & \underline{x} \end{array}$$

$$0.0500 - x$$
 x x

-
$$K_a = 6.24 \times 10^{-5}$$
 $K_b = \frac{K_w}{K_a} = 1.60 \times 10^{-10} = \frac{[OH^{-1}][HBnz]}{[Bnz^{-1}]} = \frac{x^2}{0.0500 - x} = \frac{x^2}{0.0500}$

-
$$x = \sqrt{8.00 \times 10^{-12}} = 2.83 \times 10^{-6} = [OH^{-1}]$$
 $pOH = 5.55$ $pH = 14.00 - 5.55 = 8.45$